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Abstract—Increasing variability and uncertainty coming from
both sides of the power system equilibrium equation, such as wind
energy on the generation side and increasing share of new con-
sumers such as electric vehicles on the demand side, entail higher
reserve requirements. While traditional approaches of assigning
conventional generation units to maintain system stability can in-
crease operational costs, greenhouse gas emissions, or give sig-
nals for new investments, utilizing intelligent control of distributed
sources might mitigate those negative effects. This can be achieved
by controllable charging of domestic electric vehicles. On the other
hand, increasing number of public charging stations gives final
users the opportunity to fast charge, making their vehicles an ad-
ditional source of uncertainty rather than a provider of flexibility.
This paper brings a full system assessment of combined effect of
slow home charging of electric vehicles together with fast charging
stations (both with and without integrated energy storage systems),
cast as mixed integer linear programming unit commitment model.
The contributions of this paper look into optimal periods when fast
charging is beneficial for the system operation, as well as assess the
benefits of integrating battery storage into fast charging stations
to mitigate the negative effects to power system operation.

Index Terms—Ancillary services, battery storage system, elec-
tric vehicles (EVs), fast charging stations (FCS), power system
flexibility, reserve provision.

NOMENCLATURE

Abbreviations

CPD Conventional power demand.
EPS Electrical power system.
ESS Energy storage system.
EV Electric vehicles.
FCS Fast charging stations.
G2V Grid to vehicle.
G2S Grid to station.
HPP Hydropower plants.
PRP Primary reserve provision.
RES Renewable energy sources.
S2G Station to grid.
SEV Slow electric vehicle (charging).
SOC State-of-charge.
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SRP Secondary reserve provision.
TPP Thermal power plants.
TSC Total system cost.
TSE Total system emissions.
UFC Uncontrolled fast charging.
USC Uncontrolled slow charging.
V2G Vehicle to grid.
V2S Vehicle to station.
WPC Wind power curtailment.
WPP Wind power plants.

I. INTRODUCTION

FOSSIL fuel depletion and increasing environmental aware-
ness are pushing modern societies to change their modus

operandi by reducing nonrenewable energy consumption. Cur-
rently, more than 80% of total energy supply in the world relays
on fossil fuels, where electricity generation and transportation
systems are the biggest consumers [1]. Transition to nonfossil
fuel driven economy is, therefore, seen through integration of
renewable energy sources (RES) and society’s willingness to ac-
cept lifestyle revisions such as transportation behavior changes.
Although variable RES are a key factor in building environ-
mentally efficient electrical power system (EPS), they introduce
new challenges to traditional EPS operation. Variability and
uncertainty of their primary source (wind speed, solar radia-
tion) force conventional units to operate in nonoptimal operating
points with higher number of intraday cycles. Additionally, in-
tegration of RES increases reserve requirements, which leads to
higher total operational costs and emissions [2]. To fully exploit
the benefits of RES, future power systems need to be flexible
enough to cope with generation variations. Flexibility of EPS
can be defined as the competence of EPS to balance power sup-
ply and demand through minimum cost provision of different
services on multiple time scales. This capability of EPS is tra-
ditionally provided by conventional units and constrained by
their technical characteristics. Nowadays, the focus is shifting
to new concepts and technologies [3], [4] to provide required
flexibility. A number of papers have been published analyzing
the flexibility potential of energy storage systems (ESS) [5], [6],
demand response [7], microgrids [8], multigeneration [9], EPS
interconnection [10], and electric vehicles (EV).

This paper provides a comprehensive analysis of EV integra-
tion, focusing on mitigating negative effects of uncontrollable
EV charging, in particular that of fast charging stations (FCS).
Poorly designed EV charging infrastructure and management
can generate new sources of imbalances and magnify system’s
flexibility requirements. The paper models EV behavior con-
sidering multiservice EPS with focus on a longer time scales
(week, year) and different conditions/scenarios. The novelty of
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the proposed approach is in modeling simultaneously both ef-
fects of slow, controllable charging and uncertain and variable
FCS (not shown before). Similar analyses could be done for
other demand response technologies, but due to the specific re-
quirements of EV and succinctness of the paper, they are omitted
from consideration. Specifically, this paper analyses how FCS
impact the system operation and looks into different aspects of
(non)coincidence of RES production and FCS operation. With
this in mind, integrating ESS into FCS could mitigate larger
reserve requirements of uncontrollable FCS but also act as an
additional service provider.

It should be mentioned that analyzes in this paper do not at-
tempt to provide a full economic benefits assessment of ESS
integration (by incorporating their investment costs) and cost
benefit analyses of such implementation, only operational as-
pects and benefits are the focus.

II. LITERATURE REVIEW AND RELEVANT CONTRIBUTIONS

The concept of smart EV integration is, in recently published
literature, usually seen through coordinated operation of EV and
RES [11], [12], mitigation of variable and stochastic RES im-
pact on the system operation [13], or through EV grid impacts
[14], [15]. In the case where unit commitment of the entire sys-
tem is considered, including the impact of EV on the provision
of different services and, in particular, ancillary services as one
of critical aspects of low carbon power system, FCS are ne-
glected and their potentially negative impacts are not included
in the modeling [16], [17]. To the authors’ best knowledge,
FCS have been analyzed only focusing on impacts on technical
distribution grid constraints [18], [19] or included in models
developed for distribution network planning, siting, and sizing
[20], [21]. Additionally, FCS have been considered in the ag-
gregators business concepts, maximizing revenues and defining
business models for large FCS deployment [22], [23].

Potential of EV participation in ancillary services provision
is discussed in [24] where authors conclude that providing neg-
ative secondary control is economically most beneficial for EV.
In [25] and [26], EV aggregator model is proposed for partici-
pation in energy and reserve markets. Coordinated, aggregated
participation of EV (slow charging) and battery storage stations
along with conventional units in automatic frequency regula-
tion is proposed in [27]. A new model for primary frequency
control assessment is proposed in [28]. It was shown that PEVs
can effectively improve system’s frequency response following
a disturbance. Another paper, [29], proposes EV as frequency
controllers with goal to utilize more wind power. Papers listed in
this paragraph describe the potential of EVs to provide ancillary
services, however they do not consider the whole EPS operation
nor the impact of both flexible slow or fast charging of EVs.

Stochastic optimization method has been developed in [30]
for wind balancing using EV. Stochasticity of EV gri connection
(unexpected EV interruptions) is modeled in [31]. Faria et al.
[32] analyze EV charging impact on daily load diagram as well
as detailed impact on local emissions of various particles. De-
tailed forecast tool for EV demand is provided in [33]; the
presented model is very useful for both generation and demand
side management of EV. Research in [34] provides stochastic
UC MILP model used for study on slow charging EV impact on
EPS flexibility under different charging patterns.

Work in [35] proposes day-ahead hourly unit commitment
model in a power system composed of large-scale generators

and aggregated EV. The model described in this paper is a short-
term dispatch model and observes only slow charging of EVs
without considering the need for ancillary services. Shortt and
O’Malley [36] and Ramirez et al. [37] propose interesting long-
term planning models where EV impact on system expansion
has been observed. Mathematical models are very detail, how-
ever EVs are once again modeled only as slow charging without
considering EV participation in ancillary services provision.

None of the papers published focuses on the entire power
systems modeled with all technical and economic constraints,
analyzing both SEV and FSC impacts, and considering both en-
ergy and ancillary services. This paper continues authors’ prior
research in [38] and [39], where detailed analyses of SEV con-
tribution to system flexibility are provided. Mentioned papers
handle only SEV charging as a potential flexibility provider,
whereas model in this paper adds up FCS both as flexibility sink
and source. It is very important to point out that this paper uses
the same input parameters and the same energy balance equa-
tion for both SEV and FCS (all research so far observed only
one of them). Interaction of the two methods can suppress or
enhance the total EV impact. Therefore, the main contributions
of this paper can be defined as follows.

1) Design of multiservice (energy plus reserve provision)
unit commitment model considering technical constraints
and forecasts of conventional units, RES and EVs, cast as
mixed integer linear program.

2) EVs are, for the first time, mathematically described as
both slow charging (at home) and fast charging (at FCS)
in the same model using the same driving patterns and the
same fleet’s SOC equation.

3) Assessment of combined slow and fast EV charging im-
pact on EPS flexibility through different charging modes.

4) Finding the “optimal time window” for FCS charging with
regards to SEV charging and other technical constraints.

5) Optimal SEV and FCS charging strategy selection in re-
gards to EPS flexibility.

6) Defining the role of integrated ESS as a technology to
mitigate the negative effects of FCS integration and as
additional contributor to systems flexibility.

III. PROBLEM FORMULATION

Described model captures techno-economic aspects of large-
scale thermal and hydro generators, wind generators, conven-
tional demand, and EVs. Even though the entire EPS is modeled,
contributions of this paper are in EVs modeling. Therefore, only
EV’s (both SEV and FCS in Sections III-C, III-D, and III-E) for-
mulations are explained. Details of the remaining mathematical
formulations (Sections III-A and III-B) are for the most part
omitted. Only the most relevant equations are provided. Readers
are encouraged to find related papers where additional informa-
tion can be found.

A. Electric Power System Model

EPS is based on power generation-demand balance (1) and re-
serve provision-requirements balance (2)–(6). Considered EPS
with service provision of different entities is illustrated in Fig. 1.
Generation side, left side of (1), consists of the following.

1) Conventional units.
a) Thermal power plants (TPP)—denoted as pgT P :

i) nuclear power plants;
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Fig. 1. Structure of observed EPS.

ii) coal fueled power plants;
iii) combined cycle gas turbines;
iv) open cycle gas turbines.

b) Hydropower plants (HPP)—denoted as pg_HP:
i) run-of-river;

ii) conventional HPP;
iii) pump storage—denoted as pp_PS.

2) Renewable energy sources.
a) Variable renewable energy:

i) wind power plants (WPP)—denoted as pg_WP.
On the other hand, the right side of (1) consists of the
following.

3) Conventional power demand (CPD)—denoted as Pd.
4) Electric vehicles:1

a) slow EV (SEV) charging (pc_EV) and dis. (pd_EV);
b) FCS charging (pc_FCS) and discharging (pd_FCS).2

Ni TP∑

i=1

(
pg TP

t,i

)
+

Ni HP∑

i=1

(
pg HP

t,i

)

+
Ni PS∑

i=1

(
pg PS

t,i − pp PS
t,i

)
+ pg WP

t

= Pd
t +

∫
N i EV∑

i=1

(
pc EV

t,i − pd EV
t,i

)
+

Ni FCS∑

i=1

× (pc FCS
t,i − pd FCS

t,i

)
. (1)

Ancillary services are the supporting services provided to
EPS to enable continuous and stable flow of electricity from
producer to consumer. Even though the term is used to refer to
variety of operations, in this paper it refers to spinning reserve
provision only. Reserve provision-requirements equations are
defined for five different services as follows:

1) primary reserve up (2) and down (3);

1In mathematical expressions, SEVs charging and discharging is denoted as
EV in the superscript not SEV.

2It should be noted that, with no additional storage, FCS do not actually
provide V2G service and pd_FCS variable takes the value of zero.

2) secondary reserve up (4) and down (5); and
3) tertiary reserve up (6).

Ni TP∑

i=1

fup TP
t,i +

Ni HP∑

i=1

fup HP
t,i +

Ni EV∑

i=1

fup EV
t,i

+
Ni FCS∑

i=1

fup FCS
t,i ≥ Fup

t (2)

Ni TP∑

i=1

fdn TP
t,i +

Ni HP∑

i=1

fdn HP
t,i +

Ni EV∑

i=1

fdn EV
t,i

+
Ni FCS∑

i=1

fdn FCS
t,i ≥ Fdn

t (3)

Ni TP∑

i=1

rup TP
t,i +

Ni HP∑

i=1

rup HP
t,i +

Ni EV∑

i=1

rup EV
t,i

+
Ni FCS∑

i=1

rup FCS
t,i ≥ Rup

t (4)

Ni TP∑

i=1

rdn TP
t,i +

Ni HP∑

i=1

rdn HP
t,i +

Ni EV∑

i=1

rdn EV
t,i

+
Ni FCS∑

i=1

rdn FCS
t,i ≥ Rdn

t (5)

Ni TP∑

i=1

qup TP
t,i ≥ Qup

t . (6)

The left side of equations (2)–(6)3 models all technologies
capable of providing specific reserve (variables), while right
side is calculated in advance and refers to deterministic reserve
requirements (input time vectors).

Primary reserve requirements are usually fixed values defined
by the loss of the largest generator in the system (or the largest
loss of load), while secondary and tertiary reserve require-
ments depend on demand, wind, and EV forecasts (both SEV
and FCS charging), shown in (7)–(11). R0,5h EV

t /R0,5h FCS
t

represent SEV/FCS share in secondary reserve requirements,
while R4h EV

t /R4h FCS
t represent their share in tertiary re-

serve. Please note that deterministic forecasts are used for fu-
ture SEV and FCS power requirements (as well as for CPD
and WPP); therefore, σ represents prediction error or deviation
from the expected forecasted values, thus capturing the uncer-
tainty of forecasts. Further explanations are provided in sections
below.

R0,5h EV
t

=
Ni EV∑

i=1

⎛

⎝3, 5 · σ0,5h EV
t · Pmax EV

i ·
(t−C U C H E V

i +1)∑

τ =t

Narr EV
τ ,i

⎞

⎠

(7)

3In the paper, tertiary reserve requirements are assumed to be provided only
by offline TPPs.
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R0,5h FCS
t =

Ni FCS∑

i=1

⎛

⎜⎜⎝

3, 5 · σ0,5h FCS
t · Pmax FCS

i

3
·

(
Gi

EV − Narr EV
τ ,i

) · pperf EV

100

⎞

⎟⎟⎠

(8)

Rup
t =Pgmax +

√√√√√
(3· σd · Pd

t )2 +(3, 5· σ(0,5h) WP
t · P WP

t )2

+
(
R0,5h EV

t

)2
+
(
R0,5h FCS

t

)2

(9)

Rdn
t =

√√√√√√

(
3 · σd · Pd

t

)2 +
(
3, 5 · σ(0,5h) WP

t · P WP
t

)2

+
(
R0,5h EV

t

)2
+
(
R0,5h FCS

t

)2

(10)

Qup
t =Pgmax +

√√√√√
(
3· σd · Pd

t

)2 +
(
3, 5·σ(4h) WP

t · P WP
t

)2

+
(
R4h EV

t

)2 +
(
R4h FCS

t

)2 .

(11)

Uncontrollable EV charging increases the reserve require-
ments due to uncertainty and variability of their arrival time at
charging points and energy/power requirements; on the other
hand, if EV charging is controlled/dispatchable, they are capa-
ble to provide reserve services. While TPP and HPP are conven-
tional reserve providers, uncertain and variable CPD and WPP
enhance the reserve requirements. Some papers have even con-
sidered WPP as reserve providers [40]. However, in the presence
of flexible demand, such as controllable SEV, it has been shown
that WPP are not preferred reserve providers since such concept
does not fully utilize the renewable energy generation potential
[39]. Additional information about reserve requirements and
modeling can be found in [41].

The objective function of the UC model is the minimiza-
tion of the operational costs, as shown in (12). Thermal unit’s
operational costs (startup, shutdown, fuel, greenhouse gas emis-
sions), as well as those of hydro unit costs (O&M), are included.
Thermal fuel consumption curve is modeled as three segments
piecewise linear function as it is used in the U.S. electricity
markets. For better understanding of the objective function, the
reader is directed to [42]

min COST =
Nt∑

t=1

[
Ni TP∑

i=1

(
c TP
t,i

)
+

Ni HP∑

i=1

(
c HP
t,i

)
]
. (12)

B. Generation Side Model

TPP and HPP models within unit commitment optimization
are most commonly cast as binary problems. In order to improve
computational efficiency of the UC model, TPP and HPP in this
paper are clustered by technology type as in [43].

TPP generation is bounded by the following:
1) power generation constraints (three segment piecewise

linear cost curve);
2) minimum up and down times;
3) ramping constraints;
4) reserve provision constraints;
5) greenhouse gas emission cost function.
HPP generation is subjected to:

Fig. 2. WPP and CPD forecasts and EV’s driving behavior.

1) water balance equation;
2) generation power constraints;
3) reservoir constraints;
4) hydro turbine constraints;
5) spillage constraint;
6) reserve provision constraints.
WPP generation is defined by real historical wind generation

data (it can be seen as maximum wind power generation). Cur-
tailment of WPP generation is allowed (production can be lower
than historical/deterministic data). CPD has also been modeled
as historic data, but it cannot be curtailed (strict constraint). Both
WPP and CPD curves used in this paper are depicted in Fig. 2.

Due to the succinctness of this paper, mathematical formu-
lations of UC operation are omitted from the paper but can be
found in large number of recent publications [44]. Additional
information (such as conventional units’ technical data) can
also be found in previous publications [38], [39]; the UC model
presented in those papers is further expanded in the proposed
contribution as shown in the following sections.

C. EVs Model

Integration of EVs might result in increase of peak power
demand or reserve requirements. On the other hand, availabil-
ity to provide services to the system mostly depends on their
driving/parking/charging curves. This main constraint for EV
charging/discharging is based on real historical driving behavior
curves. The main input parameters, such as the number of
EV arriving to the charging spots (Nt,i

arr EV), number of EV
leaving them (N leav EV

t,i ), and number of EV currently con-

nected to the charging spots (N g EV
t,i ) are derived from the

curves in report [45]. (13) presents energy balance equation
where energy of the entire EV fleet (s EV

t,i ) depends on fleet’s
energy in previous time step (t–1), energy of vehicles arriv-
ing (sarr EV

t,i )/leaving (sleav EV
t,i ) charging spots, energy used

for slow charging (pc EV
t,i ), energy injected back into the grid

in the V2G mode (pd EV
t,i ), and energy used for fast charg-

ing/discharging (sadd FCS
t,i ). (14) and (15) present initial and

final charging conditions. Minimum and maximum capacity of
EV fleet is constrained with (16). (17) and (18) present bound-
aries for EV energy upon arrival and departure from the charging
spot (state of charge of the fleet); Scons EV is energy of one EV
when arriving to the charging spot, Sminc EV is minimum en-
ergy of EV when leaving it, while Srmmax EV is the maximum
battery capacity of one EV

s EV
t,i = s EV

t−1,i + sarr EV
t,i − sleav EV

t,i + pc EV
t,i · ηc EV

i · Δt

− pd EV
t,i /ηd EV

i · Δt + sadd FCS
t,i (13)
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TABLE I
SEV OPERATION MODES

s EV
1,i = S0 EV

i + sarr EV
1,i − sleav EV

1,i + pc EV
1,i · ηc EV

i · Δt

− pd EV
1,i /ηd EV

i Δt + sadd FCS
1,i (14)

s EV
N t,i ≥ S0 EV

i (15)

Ng EV
t,i · Smin EV

i + sarr EV
t,i − sleav EV

t,i + sadd FCS
t,i ≤ s EV

t,i

≤ Ng EV
t,i · Smax EV

i + sarr EV
t,i − sleav EV

t,i + sadd FCS
t,i (16)

Nleav EV
t,i · Sminc EV

i ≤ sleav EV
t,i ≤ Nleav EV

t,i · Smax EV
i (17)

0 ≤ sarr EV
t,i ≤ Narr EV

t,i · Scons EV
i . (18)

As elaborated in previous sections, charging of EVs can be
done in two different ways: 1) SEV charging, denoted with EV
superscript and 2) fast EVs charging denoted with superscript
FCS in all equations. Unified modeling approach shown in the
above equations enables different analyses of these charging
regimes.

D. SEV Charging Model

Slow charging of EVs corresponds to charging at home, in
garage, at workplace, at road curbs, parking lots, etc. These lo-
cations offer charging at lower power rates but require longer
charging times (up to 10 h). However, the impact of SEV charg-
ing on EV battery is less degrading and service should be cheaper
than in the case of FCS. To investigate all possible impacts on
EPS, SEV charging is modeled through six operating modes as
follows (see Table I).

1) Operating mode A: Uncontrolled slow charging (USC;
also in the literature known as dumb, plug-in, passive).
This mode is analyzed in two scenarios: 1) where such
mode has no impact on the reserve requirements (marked
USC-NR), this is the most frequent approach in the avail-
able literature; 2) with impact/increase of the reserve
requirements (marked USC-YR), thus capturing unknown
times of EV arrival/departure and energy/power require-
ments.

2) Operating mode B: Controlled unidirectional EV oper-
ation (G2V, only charging) where EV can provide only
energy and no reserve services (denoted as G2V-NR) and

multiple services, energy, and reserve (denoted as G2V-
YR);

3) Operating mode C: Controlled bidirectional operation of
EV (called V2G) where EV can be both charged and
discharged. Again, the operating mode not only considers
energy arbitrage participation (V2G-NR) but also energy
and reserve provision by EV (V2G-YR).

In USC mode, power demand of EV passively and directly
follows parking behavior of EV. EVs begin their charging imme-
diately after they plug-in and charge until specific level of their
battery’s SOC has been reached. Discharging is not possible
during USC as modeled by (19). CUCH EV

i in (20) corresponds
to time required to fully charge EV at rated power.

pd EV
t,i = 0 (19)

CU C H EV
i = round

{
Smax EV

i − Scons EV
i

Pmax EV
i · Δt · ηc EV

}
. (20)

EVs in USC modes charge within the range of 90–100% of
their rated power, as shown in (21) and (22). (21) presents initial
conditions for time steps 1, . . . ,CUCH EV

i .

N t∑

(τ =N t+t−C U C H E V +1)

(
Narr EV

τ ,i · Pmax EV
i · 0, 9

)

+
t∑

τ =1

(
Narr EV

τ ,i · Pmax EV
i · 0, 9

) ≤ pc EV
t,i

≤
N t∑

(τ =N t+t−C U C H E V +1)

(
Narr EV

τ ,i · Pmax EV
i

)

+
t∑

τ =1

(
Narr EV

τ ,i · Pmax EV
i

)
. (21)

Equation (22) presents EV charging for a period of
CUCH EV

i , . . . , Nt

t∑

(τ =t−C U C H E V +1)

(
Narr EV

τ ,i · Pmax EV
i · 0, 9

) ≤ pc EV
t,i

≤
t∑

(τ =t−C U C H E V +1)

(
Narr EV

τ ,i · Pmax EV
i

)
. (22)

Controlled unidirectional charging (G2V) of operational
mode B is a flexible way of charging, EVs charge according to
signals from the system/market operator, as shown in (24). EV
discharging is not permitted in this mode (23). G2V mode, due
to its controllability, allows primary reserve provision (PRP),
fup_EV and fdn_EV in (27) and (28), and secondary reserve provi-
sion (SRP), rup_EV and rdn_EV in (25) and (26). EV can provide
secondary upward/downward reserve with decease/increase in
their scheduled charging power. PRP is defined in the same
manner, but it considers already allocated SRP

pd EV
t,i = 0 (23)

Pmin EV
i · Ng EV

t,i ≤ pc EV
t,i ≤ Pmax EV

i · Ng EV
t,i (24)

rup EV
t,i ≤ pc EV

t,i (25)
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rdn EV
t,i ≤ Pmax EV

i · Ng EV
t,i − pc EV

t,i (26)

fup EV
t,i ≤ pc EV

t,i − rup EV
t,i (27)

fdn EV
t,i ≤ Pmax EV

i · Ng EV
t,i − pc EV

t,i − rdn EV
t,i . (28)

In operational mode C, controlled bidirectional mode (V2G),
EVs are charged (30) and discharged (31) when they bring
benefits to power system operation. Integer variable xc EV

t,i in
(29) corresponds to the number of EV currently charging, while
(Ng EV

t,i − xc EV
t,i ) corresponds to the number of EV discharging

0 ≤ xc EV
t,i ≤ Ng EV

t,i (29)

Pmin EV
i · xc EV

t,i ≤ pc EV
t,i ≤ Pmax EV

i · xc EV
t,i (30)

Pmin EV
i ·

(
Ng EV

t,i − xc EV
t,i

)
≤ pd EV

t,i ≤ Pmax EV
i

·
(
Ng EV

t,i − xc EV
t,i

)
. (31)

Similar to G2V, bidirectional V2G operational model can
contribute to PRP, modeled as fup EV and fdn EV in (34) and
(35), and SRP, modeled as rup EV and rdn EV in (32) and (33),
respectively. SRP up can be provided by decrease in EV charg-
ing power or by increase in EV discharging power. On the
other side, downward reserve can be provided by EV charging
power increase or discharging power decrease. PRP is defined
in the same manner, but it also takes already allocated SRP into
account

rup EV
t,i ≤ Pmax EV

i ·
(
Ng EV

t,i − xc EV
t,i

)
− pd EV

t,i + pc EV
t,i

− Pmin EV
i · xc EV

t,i (32)

rdn EV
t,i ≤ pd EV

t,i − Pmin EV
i ·

(
Ng EV

t,i − xc EV
t,i

)

+ Pmax EV
i · xc EV

t,i − pc EV
t,i (33)

fup EV
t,i ≤ Pmax EV

i ·
(
Ng EV

t,i − xc EV
t,i

)
− Pd EV

t,i + pc EV
t,i

− Pmin EV
i · xc EV

t,i − rup EV
t,i (34)

fdn EV
t,i ≤ pd EV

t,i − Pmin EV
i ·

(
Ng EV

t,i − xc EV
t,i

)

+ Pmax EV
i · xc EV

t,i − pc EV
t,i − rdn EV

t,i . (35)

E. FCS Model

Integration of FCS is gaining momentum in recent years.
Many distribution system operators, or private investors, are
installing public FCS with high rated power. The main issue
concerning FCS is not their consumed energy throughout day
but their high peak demand. Fast charging service should be
more expensive than SEV regime due to higher impact on grid’s
technical constraints (such as voltage congestions) and peak
generation scheduling. Some recent research suggests that there
are benefits of integrating ESS with FCS; in these conditions,
the service for the final consumer remains fast, while the impact
on the gird and the system is reduced. As mentioned before, this
paper does not attempt to find economic justification for invest-
ments in ESS, it provides an insight in its positive impact on the
system operation. Following on this, this paper considers ESS as
integrated part of FCS, but it can be used or omitted depending

TABLE II
FCS OPERATION MODES

on the services and scenarios analyzed. FCS is modeled by six
potential operating modes (see Table II)

1) Operating mode D: Uncontrolled fast charging (UFC)
without reserve requirements impact (UFC-NR) and in-
creasing the reserve requirements (UFC-YR). The expla-
nations are similar to the mode A of SEV, however the
potential impact on requirements is much higher.

2) Operating mode E: Controlled unidirectional grid-to-
station mode (called G2S, where fast charging is con-
ducted by using ESS as a buffer to mitigate large power
requirements). Again, two cases are analyzed: 1) FCS with
reserve provision capability in G2S-YR scenario (capa-
bility of ESS to provide reserve services); and 2) without
reserve provision capability in G2S-NR;

3) Operating mode F: Controlled bidirectional station-to-
grid operation (called S2G, where FCS use ESS as in-
terface with the grid, reducing the charging/discharging
impact). Similar to the first two, this operating mode is
analyzed for concepts when ESS can provide only energy
arbitrage (S2G-NR) and energy arbitrage and reserve ser-
vices (S2G-YR).

Modeling of FCS needs to be observed through three stages:
1) availability and the number of EV to be charged by FCS; 2)
modeling ESS as a potential buffer of FCS and grid/system (if
used); and 3) operating mode (both uncontrollable and control-
lable through integrated ESS).

EV fast charging requirements are modeled with (36) and
(37). In (36), the minimum expected fast charging power is
defined, as expected percentage of on-road fast charging EV.
It is modeled using pperf EV

t , which can either be a constant
value or a decision variable (when used in the scenarios for
determining the optimal fast charging time window) as modeled
in (37). Opposite to SEV charging, where upper boundary for
EV charging power is defined by the number of EVs parked,
the requirements for EV to be fast charged are defined by the
number of on-road EV (G EV

i − Ng EV
t,i )

pf EV
t,i ≥ pperf EV

t · Pfmax EV
i ·

(
G EV

i − Ng EV
t,i

)
(36)

Pperfmin EV
i ≤ pperf EV

t ≤ Pperfmax EV
i . (37)
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Additionally, optional constraint for optimal fast charging is
modeled by (38) where fast charging during a particular period
(of length Np ) is defined by a minimum percentage of total EV
energy demand (Penf EV), meaning that a certain percentage of
EV must be fast charged. This needs to be satisfied during peri-
ods k, ensuring minimum customer satisfaction if fast charging
is allowed only during “optimal” periods in the day

Np∗(k+1)∑

T =1+Np∗k

(
pc EV

t,i · ηc EV
i · Δt

−pd EV
t,i · ηd EV

i · Δt + st,i
add FCS

)
· Penf EV

≤
N p∗(k+1)∑

T =1+Np∗k

(
st,i

add FCS). (38)

If EV can be charged by fast chargers, the decision vari-
able sadd FCS

t,i , in (13) and (14), contributes to total EV energy
demand. The energy and the time of use of fast charging is de-
fined with the duration of EV travel time T dur EV

i , modeling the
connection between FCS requirements and energy of EV bat-
tery. (39) presents initial conditions and is valid for time steps
1, . . . , arr EV

i . (40) defines additional energy for FCS in the
remaining time steps

st,i
add FCS ≤ ηi

f EV · pf EV
(N t+t−T d u r E V

i ),i · Δt (39)

st,i
add FCS ≤ ηi

f EV · pf EV
(t−T d u r E V

i ),i · Δt. (40)

(41)–(44) model storage (ESS) integrated in FCS. Integrated
ESS prevents large power spikes in peak demand periods. From
the system/grid point of view storage provides energy arbitrage
and acts as a flexibility provider, while on the EV side it pro-
vides fast charging and thus satisfies customers’ requirements
for fast service. Equation (41) presents energy balance equation
for FCS with ESS. c FCS

t,i is the current state of charge of ESS.
It is equal to energy in previous (t–1) state c FCS

t−1,i plus energy
“fast charged” to EV, pf EV

t,i , and energy exchanged by ESS and
the system/grid expressed through ESS charging (pc FCS

t,i ) and
discharging (pd FCS

t,i )

Ni FCS∑

i=1

ct,i
FCS ≤

Ni FCS∑

i=1

ct−1,i
FCS · ki

loss FCS

−
Ni FCS∑

i=1

pt,i
f FCS/ηi

fc EV · Δt

+
Ni FCS∑

i=1

pt,i
c FCS · ηi

c FCS · Δt

−
Ni FCS∑

i=1

pt,i
d FCS/ηi

d FCS · Δt. (41)

Equations (42) and (43) present initial and final conditions of
ESS FSC

Ni FCS∑

i=1

c1,i
FCS ≤

Ni FCS∑

i=1

Ci
0 FCS · ki

loss FCS

−
Ni FCS∑

i=1

p1,i
f FCS/ηi

fc EV · Δt

+
Ni FCS∑

i=1

p1,i
c FCS · ηi

c FCS∗Δt

−
Ni FCS∑

i=1

p1,i
d FCS/ηi

d FCS · Δt (42)

cN t,i
FCS ≥ Ci

0 FCS · G FCS
i (43)

FCS energy storage boundaries are defined as

Ci
min FCS · G FCS

i ≤ ct,i
FCS ≤ Ci

max FCS · G FCS
i . (44)

In UFC mode, EVs are directly connected to grid (there is no
ESS). Power for EV fast charging (pf_FCS) is equal to the power
withdrawn from the grid/system (pc_FCS), shown in (45). If there
is no ESS, the EV have no capability of discharging, as shown by
(46). This operating mode depends only on EV driving/charging
behavior; thus, it becomes an uncontrollable stochastic value.
The impact of such charging regime on reserve requirements
can only be negative, i.e., it increases reserve requirements as
modeled in (8)–(11)

pt,i
c FCS = pt,i

f FCS (45)

pt,i
d FCS = 0. (46)

On the other hand, controlled unidirectional fast charging
mode (G2S) requires ESS integration into FCS to alleviate un-
predictable and variable behavior of EV fast charging demand.
FCS are again used as platform for EV fast charging but EVs are
not directly connected to the grid. The ESS acts as a mediator
and charges during periods when it brings benefits to the EPS
(47). By doing so, it allows EV to fast charge whenever they
prefer, maintaining EV owners’ comfort. Reserve modeling is
similar as in SEV reserve provision and shown by (48)–(51)

Pi
min FCS · G FCS

i ≤ pt,i
c FCS ≤ Pi

max FCS · G FCS
i (47)

rup FCS
t,i ≤ pc FCS

t,i (48)

rdn FCS
t,i ≤ Pmax FCS

i · G FCS
i − pc FCS

t,i (49)

fup FCS
t,i ≤ pc FCS

t,i − rup FCS
t,i (50)

fdn FCS
t,i ≤ Pmax FCS

i · G FCS
i − pc FCS

t,i − rdn FCS
t,i .

(51)

Controlled bidirectional fast charging mode (S2G) is sim-
ilar to G2S mode, modeled with (52), adding the exception
of FCS discharging as in (53). Integer variable xc FCS

t,i corre-
sponds to the number of FCS currently charging, while ex-
pression (G FCS

i − xc EV
t,i ) corresponds to the number of FCS

currently discharging. Reserves are modeled in the same manner
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Fig. 3. EV types.

as SEV reserve provision

Pi
min FCS · xc FCS

t,i ≤ pt,i
c FCS ≤ Pi

max FCS · xc FCS
t,i (52)

Pi
min FCS · (G FCS

i − xc FCS
t,i ) ≤ pt,i

d FCS

≤ Pi
max FCS · (G FCS

i − xc FCS
t,i ). (53)

IV. CASE STUDIES

The value of the proposed model will be shown using two
case studies. The first analysis attempts to find an optimal time
window for EV fast charging. The goal of these simulations is
to analyze if an optimal charging time for fast charging of EV,
without integrated ESS, exists.

In the second part, the analyses focus on determining the
impact of fast charging EV on power systems flexibility. In
these analyses, the flexibility will be evaluated through three
flexibility metrics: total system cost (TSC), total system emis-
sions (TSE), and wind power curtailment (WPC). General idea
behind those three metrics is as follows: If flexibility of the sys-
tem is decreasing then conventional system components work in
nonoptimal operating points and have higher number of startups,
consequently it means higher TSC and TSE. Lower flexibility
also means the degraded capability of integrating wind power
(WPC increases).

A. Simulation Parameters

Considered energy mix is similar to U.K. power system en-
ergy mix [38]. Vehicles driving behavior is taken from [45] and
it has been used for calculation of number of vehicles arriving
and leaving the charging stations (same as in [38]). Three dif-
ferent EV battery capacities and trip lengths have been modeled
along with their different shares in total EV fleet, forming nine
EV types (see Fig. 3). EV-type shares are calculated combining
percentages of particular trip length (last row in Table III, com-
ing from [45]) and future projections of EV types share in total
EV fleet (highest priority row in Fig. 3, obtained from [46]). En-
ergy conserved at the end of the trip is calculated using battery
capacity, travel length, and average consumption.

The remaining EV technical characteristics are gathered from
different publications and they are displayed in Table III (e.g.,
EV slow charging power used is 3.7 kW—IEC 61851 one phase
ac connection, and fast charging power is 62.5 kW—ChadeMo).
In this paper, EVs are leaving the grid fully charged, Sminc EV =
Smax EV . Initial energy of each EV type (S0 EV

i ) is equal to 60%
of battery capacity of initial on-grid EV.

Three different types/sizes of FCS have been observed as
presented in Table II. Data for particular FCS type are calculated

TABLE III
EV INPUT DATA

TABLE IV
FCS INPUT DATA

Power energy loss

ηc , ηd 0,95
kloss 0,98

FCS type

Small 50
Pmin [kW] Medium 150

Large 500

Small 500
Pm ax [kW] Medium 1500

Large 5000

Small 200
Sm in [kWh] Medium 600

Large 2000

Small 1000
Sm ax [kWh] Medium 3000

Large 10000

Small 50
FCS type share [%] Medium 35

Large 15

Small 10
Max charg. number of EV (#) Medium 30

Large 100

based on the number of EV that can be charged in every time
step at full power (last row in Table IV). The total number of
FCS (Gi

_FCS) considers that all on-road EV can be fast charged
(in other words, if it is “optimal for EPS,” fast charging could be
done without ESS). FCS/ESS capacities are calculated so they
can fully recharge for eight hours at rated power.

The initial U.K. like power system (details are in [38]) energy
mix is around 35% nuclear power plants, 45% coal power plants,
15% combined cycle gas turbines, and 5% open cycle gas tur-
bines. For these analyses, a percentage of 40% WPP integration
is used with peak net demand of around 60 GW. Percentage
of EV integration is expressed as the share of EV in today’s
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TABLE V
OPTIMAL FAST CHARGING TIME WINDOW—FLEXIBILITY INDICATORS FOR UFC CHARGING MODE

Slow charging modes USC-YR G2V-YR

Uncontrolled Fast Charging Scenarios UFC 5% 0–12% 0–12 + 50% E 5% 0–12% 1–12 + 50% E
Total System Cost TSC [%] –0,31 –1,27 –1,04 0,61 0,02 0,22
Total System Emissions TSE [%] –0,06 –0,83 –0,57 –0,55 –0,02 0,25
Wind Power Curtailment WPC [%] 0,87 –9,47 –2,33 0,00 0,00 0,00
Peak Demand Increase PDI [%] –2,68 7,95 1,18 –7,43 0,00 –9,51
Energy supplied through FCS [%] 25,78 38,96 50,03 27,69 2,49 54,23

Fig. 4. Optimal fast charging time window—graphical result.

vehicle fleet in UK. It can be translated to EV maximum power;
for example, total conventional vehicle fleet in U.K. today is
around 30 million cars [47] and replacing 10% of them with
EV increases U.K. peak power demand by 20% (if they all slow
charged at daily peak power).

B. Optimal Fast Charging Time Window

This section will try to discover whether an optimal fast charg-
ing window ever exists, i.e., can the power system ever benefit
from uncontrolled FCS (taking into account flexibility that is
already consumed or brought to EPS by SEV charging). By
allowing different shares of on-road EV to fast charge at each
moment makes fast charging partially controllable but at the
cost of EV drivers comfort. For example, it can be observed as
discounts offered to FCS for charging at specific time (“happy
hours”) in order to change their behavior. On the other hand,
controllable fast charging (G2S and S2G, or FCS with integrated
ESS) provides controlled charging at FCS without any effect on
EV drivers behavior.

Following on this, two SEV operational modes are ana-
lyzed in combination with FCS; USC-YR (operational mode
A, increasing reserve due to uncontrollability, “dumb” charg-
ing), as inflexible operating regime, and G2V-YR, as source of
additional flexibility (operational mode B, providing flexibility
as reserve due to controllable charging).

Each of the two SEV modes is combined with fast charging,
three different UFC scenarios have been simulated as follows.

1) Fixed percentage of on-road EV that are allowed to fast
charge (Ptperf EV = 5%), while the remaining 95% is
using slow charging.

2) A certain percentage of up to 12% of on-road EV can fast
charge (this is modeled by (37), variables Pperfmin EV =
0%, Pperfmax EV = 12%).

3) Variable percentage of EV is fast charged; however, there
is a minimum required energy “assigned” for fast charg-
ing throughout the day (modeled with (37) and (38),
Penf EV = 50%). In this section, 100% vehicles are con-
sidered electric.

Results of the simulations are shown in Table V and Fig. 4
for one-week time horizon. It can be noticed that in case with
predefined fixed number of “dumb” fast charging EV (first col-
umn of Fig. 2), fast charging patterns are very similar for both
SEV charging modes. As expected, such charging behavior re-
sults in peak demand increase, in case of uncontrollable slow
charging, UCH-YR, the power demand increase (PDI) is around
54%, while in controllable slow charging regime, G2V-YR, PDI
increases by 28%. The explanation is rather simple; controllable
SEV charging is alleviating negative effects of FCS by shifting
its charging during the night and using as much wind as possi-
ble during low demand periods (load leveling). This can be seen
in Fig. 4, as slow charging EV curve and fast charging curve
almost never occur at the same time. Comparing peak demands
of the system with the case of only SEV charging (see Table V),
introduction of FCS slightly decreases the peak demand in both
USC-YR (−2.68%) and G2V-YR (−7,43%). On the other hand,
its effect on other flexibility metrics is negligible (operational
cost, greenhouse gas emissions, and wind curtailment). In the
second case (second column of Fig. 4), the algorithm finds
optimal fast charging time windows for fast charging. In case
of uncontrollable slow charging mode, all flexibility metrics
are slightly improved/decreased compared to fixed UFC; TSC,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE SYSTEMS JOURNAL

TSE around 1%, while WPC is reduced by 9.47%. It is inter-
esting to notice that peak demand increases (by 7.95%). This
happens because the objective function of the algorithm pushes
the minimization of WPC and during the few specific peak de-
mand moments, when there is an excess of wind, fast charging
is deployed (total demand is increased). Since UCH-YR mode
is inflexible, the capability of creating optimal fast charging
windows brings additional flexibility. Fast charging will be a
preferred option in those scenarios, encouraging all EV to fast
charge, and, by doing so, increasing fast charging energy from
26% to 39% (FCS in Table V represents percentage of total
required energy by EV provided through fast charging). It is
interesting to notice that peak demand increases (by 7.95%).
This happens since the objective function pushes the minimiza-
tion of WPC and during the few specific peak demand moments
when there is an excess of wind, fast charging is deployed (total
demand is increased). UCH-YR mode is inflexible SEV charg-
ing mode and optimal fast charging provides new flexibility,
meaning fast charging will be a preferred option in those sce-
narios increasing fast charging energy from 26% to 39% (FCS
in Table V represents percentage of total required energy by EV
provided through fast charging).

Due to high flexibility of the G2V-YR mode, there is no need
for optimal fast charging windows and the end result is that all
EVs have been controllably slow charged. In scenario where
50% of energy is being used for fast charging, both observed
scenarios (third column of Fig. 4) show poorer results as system
has been moved from its optimal point.

As a general conclusion, introduction of fast charging has
minimal effect on defined flexibility metrics when comparing to
flexible and inflexible SEV charging with 0% FCS. Uncontrol-
lable charging, both slow in (USC-YR) and fast (UFC), depends
on driving behavior of EVs and their charging occurs during
peak daytime periods. Since they are both inflexible regimes,
their effect on EPS is similar. On the other hand, G2V-YR in-
corporates high flexibility and can alleviate negative impacts of
inflexible fast charging behavior.

C. Charging Station Impact on System’s Flexibility

To evaluate the impact of fast charging on system’s flexibility,
the following analyses have been considered: 1) uncontrollable
USC-YR with the addition of fixed 5% on-road vehicles fast
charging and 2) controllable G2V-YR with the addition of fixed
5% on-road vehicles fast charging. Since there is a lack of real
data on EV fast charging, we assume these percentages. In both
analyses, six FCS operating modes and two EV shares have been
used: 33% and 67%4 (of total U.K. vehicle’s fleet as EVs). The
results are shown in Figs. 5 and 6, using 0% of fast charging EVs
as base case for comparing (all EVs have been slow charged in
base case).

Analyzing the results for uncontrollable SEV charging (see
Fig. 5), USC-YR mode, it can be noticed that FCS coupled with
ESS as a reserve provider (G2S-YR and S2G-YR) reduces all
flexibility metric values, increasing the power system flexibility.
In case of 67% of EVs, reduction of wind curtailment metric
(WPC) is higher than for 33%, while the operating cost (TSC)
and system emissions (TSE) reduction is lower. This suggests
that larger share of USC-YR impacts EPS flexibility more than it
gains from utilizing G2S and S2G reserve provision. Controlled

4The results for 100% are very similar as for 67%, therefore they are omitted
from the paper.

Fig. 5. FCS impact on EPS flexibility metrics USC-YR.

Fig. 6. FCS impact on EPS flexibility metrics G2V-YR.

fast charging modes without the capability of providing reserve
(G2S-NR and S2G-NR) improves flexibility metrics; however,
this is negligible compared to G2S-YR and S2G-YR modes.
UFC-NR mode does not impact the metrics, while UFC-YR is
the only mode negatively affecting EPS due to its increase in
reserve requirements.

G2V-YR results (see Fig. 6) differ from those of USC-YR
mode. When there is 33% share of EVs, UFC-NR and UFC-
YR negatively impact flexibility metrics, as controllable slow
charging does not provide enough flexibility to alleviate negative
effects of uncontrollable fast charging. For higher EV share,
i.e., 67% (meaning higher G2V-YR flexibility provision), fast
charging impacts are completely mitigated. For 33% EV share,
in all G2S and S2G modes, WPC is decreased. G2S-NR, G2S-
YR, and S2G-NR have negligible effect on TSC and TSE, while
S2G-YR provides far better results. For higher EV shares, all
G2S and S2G modes act as TSC and TSE enhancers. A general
conclusion can be made that unless fast chargers are coupled
with ESS, they will have a negative impact on system operation,
in terms of cost, emissions, and wind usage. Adding ESS to
FCS can create additional benefits to the system operation by
providing ancillary services, reducing the flexibility metrics.

V. CONCLUSION

This paper presents a multiple service unit commitment model
for combined SEV and FCS operation, giving insight into the
operational flexibility issues of integrating EV, respecting all
technical constraints of conventional and low carbon technolo-
gies. A detailed model of EV behavior and their impact on power
system operation, both in passive and active/controllable regime,
demonstrates how increasing number of FCS, as providers of
higher EV user comfort, can have a negative impact on power
system operation; increasing the total operational cost, emis-
sions, and reducing the level of used renewable energy. Even
in cases where a certain percentage of EV can fast charge dur-
ing “optimal” time windows, the negative effects are clearly
visible. Issues arising from EVs integration can be efficiently
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mitigated and can turn into flexibility enhancement if adequate
management plan is implemented. Uncoordinated fast and slow
modes of charging will have severe negative effects on systems
secure operation. If only controllable slow charging is enabled
(for example at home), this could, to a significant level, mitigate
negative effects of fast charging. ESS, as a part of FCS, can
mitigate the negative effects caused by a large number of EVs
being charged at FSC. Those effects are even more emphasized
in case where a certain number of EVs are uncontrollably slow
charged. In this paper, the role of storage is to act as a mediator
between charging spot and power grid, also providing energy
arbitrage and reserve services to the system operator. In gen-
eral, FCS with integrated ESS can provide flexibility to power
system by bidirectional power flow and by ancillary service
provision. This paper revealed that ancillary services provision
is more valuable as flexibility provider than the possibility of
reinjecting the power back to grid.

APPENDIX

A. Decision Variables

pg TP
t,i Thermal units generation.

pg HP
t,i Hydro units generation.

pg PS
t,i , pp PS

t,i Pump storage generation/pumping.

pg WP
t Wind power generation.

pc EV
t,i , pd EV

t,i EV slow charging/discharging.
pc FCS

t,i , pd FCS
t,i FCS charging/discharging.

pf EV
t,i EV fast charging.

fup TP
t,i , fdn TP

t,i , Thermal units primary(f)/secondary(r) up/
rup TP
t,i , rdn TP

t,i down reserve provision.

fup HP
t,i , fdn HP

t,i , Hydro units primary(f)/secondary(r) up/
rup HP
t,i , rdn HP

t,i down reserve provision.

fup PS
t,i , fdn PS

t,i , Pump storage primary(f)/secondary(r) up/
rup PS
t,i , rdn PS

t,i down reserve provision.

fup EV
t,i , fdn EV

t,i , EV primary(f)/secondary(r) up/down re-
rup EV
t,i , rdn EV

t,i serve provision.

fup EV
t,i , fdn EV

t,i , FCS primary(f)/secondary(r) up/down
rup EV
t,i , rdn EV

t,i reserve provision.

qup TP
t,i Thermal units tertiary up reserve provision.

s EV
t,i Total energy in EV fleet of one EV type.

sarr EV
t,i Total energy in cluster of EV arriving to the

grid.
sleav EV

t,i Total energy in a cluster of EV leaving the
grid.

sadd FCS
t,i Additional energy brought to EV fleet due to

fast charging.
pperf EV

t Percentage of fast charging EV.
xc EV

t,i , xc F C S
t,i Number of EV/FCS charging.

psh WP
t Curtailed wind power.

c TP
t,i Total thermal power plant cost.

c HP
t,i Total HPP cost.

ct,i
FCS Energy conserved in FCS/ESS.

B. Input Parameters

Tdur EV
i EV-type trip duration.

Ci
0 FCS Initial SOC of FCS/ESS.

Ci
min FCS , Minimum/maximum capacity of FCS/ESS.

Ci
max FCS

ki
loss FCS Storage efficiency of FCS/ESS.

Pd
t Power demand.

Fup
t Primary up reserve requirements.

Fdn
t Primary down reserve requirements.

Rup
t Secondary up reserve requirements.

Rdn
t Secondary down reserve requirements.

Qup
t Tertiary up reserve requirements.

P WP
t Potential wind power generation.

REV 0,5h
t , Secondary/tertiary reserve requirements in-

REV 4h
t crease caused by uncontrolled EV charging.

RFCS 0,5h
t , Secondary/tertiary reserve requirements in-

RFCS 4h
t crease caused by uncontrolled FCS charging.

σ
sl(0,5h) EV
t , EV USC charging standard deviation for

σ
sl(4h) EV
t secondary/tertiary reserve.

σ
sl(0,5h) FCS
t , FCS uncontrolled charging standard devia-

σ
sl(4h) FCS
t tion for secondary/tertiary reserve.

σ
(0,5h) WP
t , Wind power standard deviation for sec-

σ
(4h) WP
t ondary/tertiary reserve.

Narr EV
τ ,i # of EV arriving to the grid.

Ng EV
t,i # of EV connected to the grid.

Nleav EV
t,i # of EV leaving the grid.

Ni TP # of thermal technology types
Ni HP # of hydro technology types.
Ni PS # of pump storage technology types.
Ni EV # of electric vehicles types.
σd Power demand standard deviation.
CUCH EV

i Time required to recharge EV at full power.
ηc EV

i , ηd EV
i EV charging/discharging efficiency.

ηfc EV
i EV fast charging efficiency.

ηc FCS
i , ηd FCS

i FCS charging/discharging efficiency.
S0 EV

i Initial energy conserved in EV fleet.
Smin EV

i The lowest SOC value of one EV.
Smax EV

i The highest SOC value of one EV.
Scons EV

i Energy conserved in one EV which arrives to
the grid.

Sminc EV
i The lowest allowed SOC in EV leaving the

grid.
Pfmax EV

i Fast charging power maximum.
G EV

i Total number of EV per type.
G FCS

i Total number of FCS per type.
Pi

min FCS , FCS charging (discharging) power mini-
Pmax EV

i mum/maximum.
Pi

min FCS , EV charging (discharging) power min/max.
Pi

max FCS

Pperfmin EV
i , Minimum/maximum percentage of fast

Pperfmax EV
i charging
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